import sys
sys.path.append('Source/Core')
sys.path.append('Source/Output')
sys.path.append('Source/GroupTheory/')
from sympy import init_printing
init_printing(use_latex=True)
from Toolbox import*
RGEs = loadmodel('results/2HDM/RGEsOutput.pickle')
!cat models/2HDM.model
Let's start by looking at the results for the quartic terms, setting to zero all the gauge couplings $V(1,2) = (1{}1)^2) + (2{}2)^2 + 3(1 {}12{}2) + 4 1{}22{}1 + )((1{}2)^2+h.c.) + (1{}2 + h.c.)
l1,l2,l3,l4,l5,l6,l7 = symbols('lambda_1 lambda_2 lambda_3 lambda_4 lambda_5 lambda_6 lambda_7')
b1 = 12*l1**2 + 4*l3**2 +4*l3*l4 + 2*l4**2 + 2*l5**2 + 24*l6**2
b2 = 12*l2**2 + 4*l3**2 +4*l3*l4 + 2*l4**2 + 2*l5**2 + 24*l7**2
b3 =(l1+l2)*(6*l3+2*l4)+4*l3**2+2*l4**2+2*l5**2+4*l6**2+16*l6*l7 +4*l7**2
b4 = 2*(l1+l2)*l4+8*l3*l4+4*l4**2+8*l5**2+10*l6**2+4*l6*l7 +10*l7**2
b5 = 2*(l1+l2)*l5+8*l3*l5+12*l4*l5+10*l6**2+4*l6*l7+10*l7**2
b6 = 12*l1*l6 + 6*l3*(l6+l7)+8*l4*l6 +4*l4*l7+10*l5*l6 +2*l5*l7
b7 = 12*l2*l7 +6*l3*(l6+l7) +4*l4*l6+8*l4*l7 +2*l5*l6+10*l5*l7
#Beta function, Diff with D.R.T. Johns
(getoneloop(settozero(RGEs[0]['\\lambda_1'],['g1','g_SU2L','g_SU3c'],com=True)),getoneloop(settozero(RGEs[0]['\\lambda_1'],['g1','g_SU2L','g_SU3c'],com=True))-b1)
#Beta function, Diff with D.R.T. Johns
(getoneloop(settozero(RGEs[0]['\\lambda_2'],['g1','g_SU2L','g_SU3c'],com=True)),getoneloop(settozero(RGEs[0]['\\lambda_2'],['g1','g_SU2L','g_SU3c'],com=True))-b2)
getoneloop(settozero(RGEs[0]['\\lambda_3'],['g1','g_SU2L','g_SU3c'],com=True)),getoneloop(settozero(RGEs[0]['\\lambda_3'],['g1','g_SU2L','g_SU3c'],com=True))-b3.expand()
getoneloop(settozero(RGEs[0]['\\lambda_5'],['g1','g_SU2L','g_SU3c'],com=True)),getoneloop(settozero(RGEs[0]['\\lambda_5'],['g1','g_SU2L','g_SU3c'],com=True))-b5.expand()
getoneloop(settozero(RGEs[0]['\\lambda_6'],['g1','g_SU2L','g_SU3c'],com=True)),getoneloop(settozero(RGEs[0]['\\lambda_6'],['g1','g_SU2L','g_SU3c'],com=True))-b6.expand()
getoneloop(settozero(RGEs[0]['\\lambda_7'],['g1','g_SU2L','g_SU3c'],com=True)),getoneloop(settozero(RGEs[0]['\\lambda_7'],['g1','g_SU2L','g_SU3c'],com=True))-b7.expand()
The value of \(\lambda_4\) is actually \(\beta_5+\beta_4+\beta_3\)
getoneloop(settozero(RGEs[0]['\\lambda_4'],['g1','g_SU2L','g_SU3c'],com=True))-b5.expand()-b3.expand(),getoneloop(settozero(RGEs[0]['\\lambda_4'],['g1','g_SU2L','g_SU3c'],com=True))-b4.expand()-b5.expand()-b3.expand()
getoneloop(RGEs[0]['U1']),getoneloop(RGEs[0]['SU2L']),getoneloop(RGEs[0]['SU3c'])
settozero(getoneloop(RGEs[1]['\\lambda_1']),['\lambda_{}'.format(i) for i in range(1,8) if i != 1],com=True)
settozero(getoneloop(RGEs[1]['\\lambda_2']),['\lambda_{}'.format(i) for i in range(1,8) if i != 2],com=True)
settozero(getoneloop(RGEs[1]['\\lambda_3']),['\lambda_{}'.format(i) for i in range(1,8) if i != 3],com=True)
settozero(getoneloop(RGEs[1]['\\lambda_5']),['\lambda_{}'.format(i) for i in range(1,8) if i != 5],com=True),settozero(getoneloop(RGEs[1]['\\lambda_6']),['\lambda_{}'.format(i) for i in range(1,8) if i != 6],com=True),settozero(getoneloop(RGEs[1]['\\lambda_7']),['\lambda_{}'.format(i) for i in range(1,8) if i != 7],com=True)
So the equations (44) (45) are correct. Note that I did not check the yukawa contributions
the different terms for the Only switch are : "QuarticTerms, ScalarsMasses,FermionMasses,TrilinearTerms,Yukawas"
!cat Run2HDM.settings